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Abstract

In this report we consider the inviscid instability of three-dimensional boundary-layer

flows with a small crossflow over locally concave or convex walls, along with the inviscid

instability of stratified shear flows. We show how these two problems are closely related

through the forms of their governing equations. A proposed definition of a generalised

Richardson number for the neutrally stable inviscid vortex motions is given. Implications

of the similarity between the two problems are discussed.
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§1. Introduction

In a recent paper, Bassom & Hall (1991) have considered vortex instabilities in three-

dimensional boundary layers and the relationship between GSrtler vortices (G6rtler, 1940)

and crossflow vortices (Gregory et al, 1955). Meanwhile the studies of Hall & Morris (1991)

and Hall (1992) have shown that there is also much similarity between tile G6rtler vortex

problem and that for the streamwise vortices in |ieated-wall boundary layers. Our concern

here is with illustrating the close relationship between the inviscid vortex instabilities,

considered by Bassom & Hall (1991), and those of stratified shear flow, first considered by

Coldstein (1931) and Taylor (1931).

A detailed review of the previous Studiesre]ated to the G6rtler vortex prol)lem can be

found in many of the recent papers concerned with this instability. Rather than repeat such

material, we refer the reader to the introduction of Bassom & Hall (1991) and references

therein. The Reynolds number R of the flow (to be defined in the next section) will be taken

to be large; further, our asymptotic analysls V_;iI]be restricted to large GSrtler numbers

G (also to be defined in the next section). The latter assumption is the more significant,

restricting the theory to regions of high (local) wall curvature. Bassom & Hall (1991)

have shown that in a 3D boundary layer, the inviscid modes rise in significance to become

the most dangerous ones as the amount of crossflow increases. Thus, it is important to

investigate the neutral curve bounding these unstable modes. Moreover, a study of neutral

vortices is also useful towards the weakly nonlinear analyses of the instability development.

The stability of inviscid stratified shear flows has been considered many times over the

past sixty years. This classical problem of hydrodynamic stability theory has been used as a

model to consider the stability of atmospheric flows in attempts to explain the phenomena

observed in practice. The model incorporates the two competing effects of a potentially

unstable shear flow and a stabilising density distribution. The governing equation for the

linear instability of such flows is similar to the celebrated Rayleigh's equation, but has the

extra buoyancy term which is proportional to a physical parameter generally referred to

as the Richardson number.

The rest of this article is divided as follows. In the next section, we outline the

derivation of the Bassom-Hall equation governing the stability of inviscid vortices in 3D



boundary layers with weak, viz., O(G/Re)I/2, crossflows. As shown by Bassom and Hall

(1991), the GSrtler vortex structures cannot persist if the magnitude of the crossflow

exceeds this level. In §3 we discuss the stability properties for both locally concave and

convex walls. This is followed by a brief discussion of the numerical methods that were

employed in these calculations. In the final section, we begin by outlining the inviscid

stability theory for stratified shear flows. We then go on to show their close relationship

to the centrifugal-crossflow driven instabilities, or the GSSW (GSrtler-Gregory-Stuart-

Walker) modes as we propose to call them in §4.

§2. Inviscid vortex instabilities in 3D boundary layers with weak crossflows.

We consider the flow of a viscous incompressible fluid of kinematic viscosity v over a

wall of variable curvature rolX(x/L). Here r0 and L are typical length scales associated

with the radius of curvature of the wall and the downstream development of the boundary-

layer flow, respectively. Denoting by Uo. the free-stream speed sufficiently far from the

wall, we define the Reynolds number Re and the GSrtler number G by

Re - Uo_L and G = 2LRel/2, (2.1a, b)
// r 0

where we restrict our attention to flows where Re >> G >> 1. Next, the dimensionless

coordinates

X = x/L, Y = Re_/2(y/L), Z = Rel/2(z/L) (2.2a-e)

are introduced and the boundary layer velocity and pressure expanded in the form

u = + v0E+.., +  a"voEl +..., +  w0EJ+.. ),

p =/5 + eRe -1GPoE +"., (2.3a - d)

where

E = exp(iaZ + G '/2 (fl +...)dx), (2.4)

and e is the nondimensional amplitude of the vortex disturbance. Here u,v, _ and 15

correspond to the base three-dimensional boundary layer, whilst U0, V0, W0 and P0 are the

respective disturbance functions.
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The abovescalesand expansionslead to the equation

(rift + _iat3)2(Voyy- a2Vo)- (fl_t + _iaff))(flftyy + _ia_yy)Vo + aUxft_yVo = 0, (2.5)

governing the spatial instability of the base flow to steady streamwise inviscid vortices. This

equation was first derived by Bassom & Hall (1991). Together with the usual boundary

conditions (V0 _ 0 as Y _ 0, co), it constitutes an eigenproblem for the spatial growth rate

/3,. (the real part of/3) in terms of the scaled waVenumber a, the scaled crossflow parameter

and the local wall curvature )/. As noted by the above authors, the problem is a localised

one and this enables the magnitude of X to be scaled out of the problem; thus, we only

need to consider the two cases X = -t-1. The case X"= 1 corresponds to a wall with locally-

concave curvature. Such a curvature is usually necessary for the existence of centrifltgal

(Taylor-GSrtler) instabilities and was the sole case considered by Bassom &: Hall (1991).

Here we consider both concave- and convex-curved walls, the latter case being synonymous

with the choice )/= -1. For a discussion concerning the technological relevance of convex

curvature, the reader is refered to Bandyopadhyay (1990). The generalisation of equation

(2.5) to compressible and hypersonic boundary-layer flows has been studied by Dando

(1992) and Fu &: Hall (1992), respectively.

Following Bassom &: Hall (1991), for a typical base boundary-layer flow, we consider

the case of a self-similar Falkner-Skan-Cooke boundary layer with a value of 1/2 for the

Hartree parameter. Then, _ and t? are given by _ = f' (Y) and t_ = g(Y), where f and g

satisfy

,,, f f,, 1 , ,
f + +_(1-f'2)=0, f(O)=f(O)=O, f(co) =1,

tr i

g +fg =0, g(O)=O, g(co)=l. (2.6a, b)

The numerical solution of (2.5), plus that of (2.6), is considered in the next section.

§3. Numerical results of the Bassom-Hall equation for both locally concave

and convex walls.

Let us first consider the results for a locally concave curvature (;g = 1). Bassom &

Hall (1991) solved equation (2.5) to obtain amplification rates/3 for several values of a and
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_. Their main concern was the effect of crossflow on the growth rates and, hence, they did

not attempt to calculate the neutral curve for the inviscid vortices. However, their results

indicate that crossflow has a stabilising effect on the inviscid vortices in the sense that,

for all _ > 4.69, there exists a finite band of wavenumbers where the first mode is stable.

In our calculations, we also considered the next 'most dangerous' mode and found that it

cuts out for a different band of wavenumbers, i.e., the flow is actually unstable for some of

the wavenumbers where the first mode is stable. This point was noted independently by

Dando (1992) who shows that a consideration of the higher modes is especially important

for compressible flows.

In figure 1 we present the neutral curves for the first two modes; it should be noted

that unlike most neutral curves, the flow is unstable to its associated mode out.*ide of

the curve rather than inside. The right hand branch of the neutral curve for each mode

_2 shas an asymptote of a _ (with fl .._ _ )) as i _ oc, as suggested by Bassom and

Hall (1991). Therefore, the neutral vortices shrink in their spanwise as well as streamwise

wavelengths as the erossflow parameter is increased. It was also found that the critical

layer position (where fli_ + _aw = 0) progressively shifts towards the wall as _ --. oo, with

the vortices aligning themselves with the local flow direction in this region. In other words,

the orientation of the vortices is such that fli_y(0)+ _at_z(0) = 0, which matches with the

small wavenumber asymptote in the viscous mode region considered by Bassom and Hall

(1991). The left hand branch, on the other hand, tends to a constant spanwise wavenumber

a = 1.305, as _ --* oo. This limit corresponds to the neutral crossflow vortices that are

associated with the inflection point of the directional profile, and were first analyzed by

Gregory et. aI. (1955). It is natural to expect this kind of limiting behaviour since the

centrifugal forces will have relatively little effect when the crossflow is increased while

keeping the spanwise wavenumber a to be O(1). For the base flow given by (2.6), the

orientation of these neutral vortices is given by fli/_a _, 0.861.

It is also seen from figure 1 that the minimum amount of crossflow required to induce

stability in some region of the wavenumber space is smaller in the case of the second mode;

however, the band of stable wavenumbers is also much narrower in that case. Another

interesting feature of the second-mode neutral curve is the rapid approach of its left-hand
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branch to the GSW asymptote. In fact, it is seen from figure 1 that, for all practical

purposes, the entire left-hand branch (from _ ._ 4.12 to _ -+ oo) may be taken as being

equal to the GSW asymptote. Thus, in summary, we find that for locally concave walls

(X = 1), an increase in the amount of crossflow renders stability in a progressively broader

range of spanwise wavenumbers; however, the effect of crossflow on the stability properties

of different modes is quite non-uniform in the wavenumber space.

Let us now consider the results for locally-convex curvatures (X = -1). This case was

not mentioned by Bassom & Hall (1991), Dando (1992) or Fu & Hall (1992) (however in

the latter study the strong curvature of the streamlines of the base flow, i.e., a negative

effective GSrtler number, is considered). This is probably because the above authors were

primarily concerned with the effect of crossflow on the GSrtler (1940) instability, rather

than the effect of curvature on the crossflow i!__stability of Gregory et aI (1955). We solved

equation (2.5), for X = -1, to obtain amplification rates for several values of _ and a. In

figure 2 we present the neutral curve in the _-a plane - note that here, the vortices are

unstable inside the neutral curve, and stable outside. Since convex curvature is stabilizing,

there is no steady instability at _ = 0, and the minimum amount of crossflow required to

induce any steady instability in this case is seen to be _ = 6.42. The critical wavenumber

corresponding to this minimum crossflow is approximately equal to 0.92. Also notice

that in the convex-curvature case, it is the right-hand branch of the neutral curve which

asymptotes to the neutral mode of Gregory et al as _ -+ oo, whereas the left-hand branch

asymptotes to the long-wavelength modes (a --_ 0), with the calculations suggesting that

_a .'. -i3_ "_ constant (._ 3.98). In other words, the critical layer corresponding to the

neutral modes along the left-hand-branch moves off to the outer edge of the boundary

layer as _ ---+ oo. Such a limiting behaviour had also been observed earlier by one of us

(MC) in the context of stationary Rayleigh (i.e., pure crossflow) modes in a rotating-disk

boundary layer.

In addition to the neutral curve, figure 2 also illustrates the locus of the wavenumber

locations corresponding to the maximum amplification rate at any fixed value of the cross-

flow parameter _ (see the dotted curve in figure 2). We have also indicated the numerical

values of the spatial amplification rate scaled by the crossflow parameter (i. e., /_/_) at a
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few selectedvaluesof _. One may observethat as _ increasesbeyond a value of 15, this

ratio approaches fairly rapidly to 0.0336, which is the maximum amplification rate for the

crossflow vortices on a surface without any curvature.

It should be clear from the above discussion that, for larger crossflows, the modes of

figures 1 and 2 are essentially the crossflow vortices considered first by Gregory et al (1955).

However, for _ = O(1), their properties are governed crucially both by the crossflow and

the wall curvature and hence, we feel that an appropriate term for them, as well as for their

counterparts above for a locally concave wall (X = 1), might possibly be 'GSrtler-Gregory-

Stuart-Walker' (GGSW) modes. This is how we shall refer to them in the remainder of the

paper. We note that equation (2.5), governing the instability properties of these modes,

could alternatively be derived by considering the effects of wall curvature on the crossflow

modes of Gregory et al (1955).

:/
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Since the numerical schemes used to obtain the above results also merit discussion

by virtue of their novelty, a brief description is now provided. Two types of numerical

schemes, both accurate and efficient for this type Of calculation, were used. As the neutral

inviscid eigenfunctions are singular at the critical layer, integration in Y has to be along an

indented contour in the complex Y plane. Previous numerical approaches typically used

a small indented contour, on which the mean flow properties were computed using a low

order Taylor expansion about the critical point, in addition to the loss of accuracy in this

procedure, one also needs to shift the position of the contour each time the critical point

moves out of the indented portion of the contour (note that in the present problem, the

critical layer location varies over a large range). However, by integrating the mean flow

equations also on the same contour, (i) one can compute an accurate mean flow on the

grid used for stability calculations, and (ii), one can enlarge the indented portion of the

contour sufficiently so that the grid only needs to be changed very few times during the

calculation of the entire neutral curve (if at all).

One numerical scheme used a fourth order Runge-Kutta scheme and a finite-difference

scheme to compute the mean flow and eigenfunction (respectively) along a contour with a

large triangular indentation above the real axis into the complex plane, whilst the second

approach used was a multi-domain spectral scheme consisting of two segments along the



real axis together with a semi-circular contour of arbitrary size above the real axis. To

our knowledge, this is the first multidomain spectral computation involving both real and

complex integration domains. The accuracy of the codes was checked against an exact

analytic solution that exists for the case of a 2D boundary layer; it was found that the

numerical eigenvalues agreed with the analytic ones to six significant figures in the case of

the finite-difference scheme and seven significant figures for the spectral scheme.

§4. Discussion: the connection with the Taylor-Goldstein equation and

stratified shear flows.

In this final section, we illustrate the analogy between the instability problem consid-

ered in the previous sections with that for stratified shear flows. The inviscid instability

of the latter flows is governed by the so-called Taylor Goldstein equation (Taylor, 1931;

Goldstein, 1931) which we write in the form

-- -#2 -!

_ c)2(  y _ _ (y - c)(ry  + J /gc : o, (4.1)

where 0, _ are the nondimensional base shear-flow and the varying density across it,

respectively; J is a parameter measuring the influence of the density gradient relative to

the shear of the velocity field; subscript c indicates that the quantities are evaluated at the

critical level, Y = yc, where 5r(yc) = c; _?is the amplitude of the perturbation to the vertical

velocity, whilst a and c are its wavenumber and wave-speed respectively. Derivations of

this equation can be found, for instance, in the papers by Drazin (1958) and Miles (1961).

Usually equation (4.1) is solved on the unbounded domain -ec < y < ec, with a

typical case being that of [7 = tanh(y) and _ y or tanh(y). Together with the boundary

conditions b(:t:oc) = 0, it constitutes an eigenvalue problem for c = c(a; J) or alternatively

a = a(c; J). The important parameter J is known as the (local) Richardson number and

the eigenvalues are strongly dependent on its value.

Like its close relative, Rayleigh's equation (J = 0), the Taylor-Goldstein equation

(4.1) is singular at the critical level y = y_. However, the singularity is stronger: note that

the coefficient of the highest derivative of t3 has a double zero at y = y¢. Miles (1961) has

derived several theorems concerning solution properties of the Taylor-Goldstein equation;



in particular, (i) that it possessesno unstable solutions for J > 1/4, and (ii) that the

neutral eigenfunctions are proportional to just one of the associated Frobenius solutions,

13 (_.7 C ½ (1 ::k_)"-" - ) , (4.2)

near the critical level. Note that in atmospheric-flow applications J is usually considered

to be positive (stable stratification) but that in aerodynamical applications it will usually

be negative, i.e., as for the boundary-layer flow over a heated plate considered recently

by Hall & Morris (1991) and Hall (1992) where buoyancy effects are shown to be strongly

destabilising.

Let us now return to equation (2.5) governing inviscid vortex instabilities in 3D bound-

ary layer flows over highly-curved walls. It is immediately clear from a comparison of

equations (2.5) and (4.1) that equation (2.5) has (as first deduced and pointed out to

the authors by Professor P. Hall; private communication, 1991) essentially the form of

the Taylor-Goldstein equation: note that, in particular, both equations are singular at a

critical level where the coefficient of the highest derivative has a double zero. Hence the

theorems of Miles (1961) are directly applicable to the Bassom-Hall equation (2.5).

It is very easy to derive an analogue of the local Richardson number, J, for the inviscid

vortex (GGSW) instabilities in 3D boundary layers. A quick inspection of equation (2.5),

in the neighbourhood of the critical level, indicates that

a 2
J = XUcUc

, = _; _ (4.3)
+

is the appropriate definition/generalisation. Here fli represents the imaginary part of ft.

hnmediately, we see that

_g'_(J) = -_g'_(X), (4.4)

i.e., continuing the analogy, we see that convex wall curvature (X < 0) corresponds to

stabilising dmlsity stratification; whereas concave wall curvature (X > 0) corresponds to

destabilising density stratification. Thus, (at least) two seemingly unrelated stability prob-

lems of classical fluid mechanics are in fact very closely related in a theoretical sense. We

remark that the solution properties (for J > 0) of the Taylor-Goldstein equation (see



Drazin, 1958) would have motivated a study of the Bassom-Hall equation (2.5) for _ = -1,

had we not already done so!

Once 'neutral values' for the GGSW modes (X = -t-1) are calculated, it is very simple

to calculate the associated (generalised) Richardson numbers J using (4.3), as well as the

phase jump (_b say) of the linear neutral eigensolution across the critical level (Y+ _ Y_--),

which is related to J via

_b = -rr(1 + V_ - 4J)/2. (4.5a)

The corresponding behaviour of tile eigenso_[ut_6n in the vicinity of the critical level is

given by

Vo ,_, (g - Y_)('+v4=TJ)/2 (4.5b)

Note that the relevant choice of sign in equations (4.5a,b) must, in general, be deduced

from an inspection of the numerically calculated eigenfunctions. For locally concave walls

(J < 0) we found that the minus sign was always appropriate. In other words, the phase

shift _ is always positive in this case, but the eigenfunction becomes unbounded at the

critical level. This appears to be the first example in hydrodynamic stability theory where

tile vertical velocity eigenfunction does not have a finite norm in the/;_ space. The minus

sign is also appropriate when the wall is locally convex (X = -1, J > 0), but only for

roughly the right half (a > 0.84) portion of the neutral curve in figure 2. The fact that this

value is rather close to the critical wavenumber (a = 0.92) in figure 2 is purely coincidental.

For wavenumbers smaller than 0.84, the '+' sign was found to be appropriate. Of course,

since J > 0 in the convex-wall case, the elgenfunction always remains bounded along the

neutral curve, irrespective of whether the plus or the minus sign is appropriate in (4.5a,b).

In figure 3, we present a unified plot of the neutral curve in both the concave- and

convex-curvature cases in the _b - a and, equivalently, in the J - a plane. Note that

the portion from each of the _b and J curves with a < 1.305 corresponds to _ = -1,

with the remaining one (a > 1.305) being related to the first mode for X = 1. The link

between these two portions, viz., a = 1.305, corresponds to the neutral wavenumber of the

crossflow vortices, i.e., the limit _ _ co, considered by Gregory et al in 1955. As alluded to

previously, it is not surprising that the curvature will have little influence on the solutions

of the Bassom-Hall equation in this particular limit, and accordingly, one finds that both

9



curvesare continuous at this wavenumber. What is perhN)s more interesting is that the

.dope._of the graphsare alsocontinuousthere. This indicates that two seeminglyphysically

different problems ;g= 4-1 are in fact 'two halves' of the same problem in a mathematical

sense, being connected through the _ _ oc limit (or, alternatively , through a = 1.305;

see figures 1 and 2) . It also appears to confirm the accuracy of our computed numerical

solutions.

i

Note that the shape of tile J v.s. a curve in figure 3 is remarkably similar to that

appearing in Drazin's (1958) figure 2. Moreover, J _< 1/4 for the GGSW modes, in full

agreement with a theorem of Miles (1961) for the instabilities of stratified shear flows.

One may also observe that the value of J asymptotes to a finite constant (viz., -2) as

the wavenumber becomes large. This is unlike the usual stratified flow problems (Drazin

1958, Hazel 1972) where, typically, J --* -oc as a --+ cx_. We believe that the limited range

of possible Richardson numbers for the neutral GGSW modes is the result of the base

flow being wall bounded, as against the free shear flows studied usually in the stratified

flow context. We found that the second mode for _ = 1 has J values ranging from

-4 to -7, although, unfortunately, the asymptotic nature of these boundaries could not

be established due to the considerable numerical difficulties encountered in higher-mode

computations.

Finally, one may see from figure 3 that the phase shift q_ takes all values between

-rr and _r, in contrast to many other linear problems where the phase shift only takes the

values -Tr or 0 depending on the presence and location of so-called inflection points. In the

concave-wall case, the magnitude of the phase shift and, hence, the degree of singularity

near Y = Y_ increases monotonically as one moves from the GSW asymptote (q_ = 0) to

the wall-mode asymptote (¢ = _) along the neutral curve in figure 1. On the other hand,

the phase shift in the case of a convex-wall is found to decrease from 0 to -rr as one moves

from the GSW asymptote to the small-wavenumber asymptote in figure 2. Moreover, the

degree of singularity in the neutral eigenfunction increases inward from both asymptotes,

achieving a (Y - y_)_/2 type behaviour near a = 0.84, where J = 1/4. Since J = 1/4

does not correspond to the minimum crossflow (,_ = 6.42) as mentioned previously, this

particular value of the Richardson number does not have the kind of physical significance

10



in the present problem which it has in the stratified-flow context.

§5. Conclusion.

We now finish with a few remarks in conclusion. Bassom & Hall (1991) have shown

that the inviscid instability of weakly three-dimensional boundary layers over concave

curved walls is very closely connected to the crossflow instability of Gregory et al (1955).

We have extended their study to convex-curved walls and have shown that all these in-

stabilities of boundary-layer flows are, moreover, related mathematically to instabilities

of stratified shear flows. Physically, the common feature between these two classes of in-

stabilities is the presence of an inviscid body force which, along with the inertial effects

associated with the shear flow, can have a profound impact on the stability of the flow.

This body force corresponds to the centrifugal force due to surface curvature in the former

case, whilst it is induced by the density stratification in the case of the latter class of flows.

The effects of this body force relative to that of the shear-flow instability can always be

characterized in terms of some suitable analogue of the Richardson number. The proposed

form for this generalized Richardson number for the GSSW modes is given by equation

(4.3). It would be very simple indeed to 'doubly' generalise this definition to compressible

boundary-layer flows and boundary-layer flows over heated plates.

The closeness between the two problems also suggests that ideas and theories from

the many studies of stratified shear flows (many of which, themselves, are adaptations

from the corresponding ideas and theories for homogeneous shear flows) can be applied to

future studies concerning the GGSW modes, involving, for instance, their weakly and/or

fully nonlinear evolution subsequent to the linear growth stage. Another aspect that may

warrant further investigation as far as the GGSW modes are concerned is the answer to

the question whether any of these modes are 'absolutely unstable,' since in the corre-

sponding study for stratified shear flows, Lin & Pierrehumbert (1986) do find regions of

'absolute' instability (to date, GSrtler vortex instabilities have generally been found, as

well as observed, to be 'convective' in nature).
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